粉末原子層沉積技術如何實現(xiàn)又有哪些優(yōu)勢呢?
粉末原子層沉積包覆技術,目前已廣泛應用于鋰電、催化、金屬、制藥等領域。
那么,低成本的規(guī)?;勰┰訉映练e包覆技術是如何實現(xiàn)的呢?
Forge Nano 目前已開發(fā)出成熟的商業(yè)化粉末原子層沉積 PALD 技術, 其采用大批次處理的流化床系統(tǒng)進行粉末包覆的研究,并搭建了多種 PALD 系統(tǒng)。
粉末原子層沉積流化床系統(tǒng):
在流體作用下呈現(xiàn)流(態(tài))化的固體粒子層稱為流化床。流化床方案是較為理想的一種分散方式,流化是將顆粒懸浮在移動的流體中,使其表現(xiàn)為類液體狀態(tài)的一種方法。通過氣流的作用在粉未床層上下形成壓力差 ΔP,粉末在重力與壓力的雙重作用下實現(xiàn)動態(tài)平衡。流化會促進顆粒與顆粒之間打開縫隙,從而有利于前驅(qū)體與每一個顆粒充分接觸。
流化床粉末原子層沉積包覆系統(tǒng)
Forge Nano 流化床系統(tǒng)
隨流體速度的不同,床層可具有不同的流化特性。如流速過低,則床層固定不動,流體僅從顆粒間空隙流過,壓降 Δp 隨流速而增加。如流速增大到使壓降和單位橫截面上的床層重量相等,固體顆粒便開始浮動,床層呈現(xiàn)流動性,這種狀態(tài)稱為最小流化或起始流化。這時按空床橫截面計算的流速稱為起始流化速度或最小流化速度 Umf。流速再增大,床層將隨流速的增大而繼續(xù)膨脹,出現(xiàn)壓降穩(wěn)定、流動性能良好的穩(wěn)定操作區(qū),稱為正常流化。如流速繼續(xù)增大,則床層湍動加劇,床面漸難辨認。當流速達到它對單個固體顆粒的曳力同顆粒的浮重相等時,顆粒便開始被氣流帶出。這時的空床流速稱為終端速度或帶出速度 ut,Umf 和 ut 值決定于顆粒和流體的性質(zhì),它們是一般鼓泡流化床操作的上、下限。
粉末原子層沉積流化床技術優(yōu)勢:
1.相對較好的粉末分散效果,保證了包覆的均勻性,避免涂層厚度不均勻的問題
2.對于部分難揮發(fā)的低蒸汽壓前驅(qū)體,氮氣輔助輸送可以促進傳輸效率
3.更好的傳質(zhì)與傳熱效率,前驅(qū)體利用率較高,加快反應效率
原子層沉積ALD 前驅(qū)體的表面吸附是一個快速的過程,其速率是由前驅(qū)體分子找到并與表面成核位置反應的概率決定的。由于氣體擴散路徑的增加,對于軟團聚或黏合程度較高的粉末,這一過程將比平面原子層沉積 ALD 需要更長的時間。
高顆粒循環(huán)頻率的流化床系統(tǒng)可以促進顆粒碰撞,避免未反應的前驅(qū)體分子逃逸。氣固流化由于其較高的物理混合率和床層翻轉(zhuǎn)頻率從而具有較高的接觸效率??焖俚幕旌线€有助于創(chuàng)造一個對流渦旋,以保持等溫的條件,防止局部過熱。